Downscales a raster to a higher resolution raster using a robust regression
raster.downscale( x, y, p = NULL, n = NULL, filename = FALSE, scatter = FALSE, ... )
x | Raster class object representing independent variable(s) |
---|---|
y | Raster class object representing dependent variable |
p | Percent sample size |
n | Fixed sample size |
filename | Name of output raster |
scatter | (FALSE/TRUE) Optional scatter plot |
... | Additional arguments passed to predict |
A list object containing:
downscale downscaled raster (omitted if filename is defined)
model rlm model object
MSE Mean Square Error
AIC Akaike information criterion
Jeffrey S. Evans <jeffrey_evans@tnc.org>
if (FALSE) { library(raster) elev <- raster::getData('alt', country='SWZ', mask=TRUE) tmax <- raster::getData('worldclim', var='tmax', res=10, lon=8.25, lat=46.8) tmax <- crop(tmax[[1]], extent(elev)) # Downscale temperature tmax.ds <- raster.downscale(elev, tmax, scatter=TRUE) opar <- par(no.readonly=TRUE) par(mfrow=c(2,2)) plot(tmax, main="Temp max") plot(elev, main="elevation") plot(tmax.ds$downscale, main="Downscaled Temp max") par(opar) }