Create a random raster or raster stack using specified distribution
random.raster( r = NULL, n.row = 50, n.col = 50, n.layers = 1, x = seq(1, 10), min = 0, max = 1, mean = 0, sd = 1, p = 0.5, s = 1.5, distribution = c("random", "normal", "seq", "binominal", "gaussian") )
| r | Optional existing raster defining nrow/ncol |
|---|---|
| n.row | Number of rows |
| n.col | Number of columns |
| n.layers | Number of layers in resulting raster stack |
| x | A vector of values to sample if distribution is "sample" |
| min | Minimum value of raster |
| max | Maximum value of raster |
| mean | Mean of centered distribution |
| sd | Standard deviation of centered distribution |
| p | p-value for binominal distribution |
| s | sigma value for Gaussian distribution |
| distribution | Available distributions, c("random", "normal", "seq", "binominal", "gaussian", "sample") |
RasterLayer or RasterStack object with random rasters
Options for distributions are for random, normal, seq, binominal, gaussian and sample raster(s)
Jeffrey S. Evans <jeffrey_evans@tnc.org>
library(raster) # Using existing raster to create random binominal r <- raster(system.file("external/rlogo.grd", package="raster")) r <- random.raster(r, distribution="binominal")#>#> Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'raster': Not an available distribution# default; random, nrows=50, ncols=50, nlayers=1 rr <- random.raster(n.layer=5)#># specified; binominal, nrows=20, ncols=20, nlayers=5 rr <- random.raster(n.layer=5, n.col=20, n.row=20, distribution="binominal")#>#> Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'raster': Not an available distribution# specified; gaussian, nrows=50, ncols=50, nlayers=1 rr <- random.raster(n.col=50, n.row=50, s=8, distribution="gaussian")#># specified; sample, nrows=50, ncols=50, nlayers=1 rr <- random.raster(n.layer=1, x=c(2,6,10,15), distribution="sample" )#>#> $layer #> value count #> [1,] 2 666 #> [2,] 6 646 #> [3,] 10 603 #> [4,] 15 585 #>