Calculates a local polynomial regression fit with associated confidence intervals

loess.ci(y, x, p = 0.95, plot = FALSE, ...)

Arguments

y

Dependent variable, vector

x

Independent variable, vector

p

Percent confidence intervals (default is 0.95)

plot

Plot the fit and confidence intervals

...

Arguments passed to loess

Value

A list object with:

  • loess Predicted values

  • se Estimated standard error for each predicted value

  • lci Lower confidence interval

  • uci Upper confidence interval

  • df Estimated degrees of freedom

  • rs Residual scale of residuals used in computing the standard errors

References

W. S. Cleveland, E. Grosse and W. M. Shyu (1992) Local regression models. Chapter 8 of Statistical Models in S eds J.M. Chambers and T.J. Hastie, Wadsworth & Brooks/Cole.

Author

Jeffrey S. Evans jeffrey_evans@tnc.org

Examples

x <- seq(-20, 20, 0.1) y <- sin(x)/x + rnorm(length(x), sd=0.03) p <- which(y == "NaN") y <- y[-p] x <- x[-p] opar <- par(no.readonly=TRUE) par(mfrow=c(2,2)) lci <- loess.ci(y, x, plot=TRUE, span=0.10) lci <- loess.ci(y, x, plot=TRUE, span=0.30) lci <- loess.ci(y, x, plot=TRUE, span=0.50) lci <- loess.ci(y, x, plot=TRUE, span=0.80)
par(opar)