Distance weighted smoothing of a variable in a spatial point object

idw.smoothing(x, y, d, k)

Arguments

x

Object of class SpatialPointsDataFrame

y

Numeric data in x@data

d

Distance constraint

k

Maximum number of k-nearest neighbors within d

Value

A vector, same length as nrow(x), of adjusted y values

Note

Smoothing is conducted with a weighted-mean where; weights represent inverse standardized distance lags Distance-based or neighbour-based smoothing can be specified by setting the desired neighbour smoothing method to a specified value then the other parameter to the potential maximum. For example; a constraint distance, including all neighbors within 1000 (d=1000) would require k to equal all of the potential neighbors (n-1 or k=nrow(x)-1).

Examples

library(sp) data(meuse) coordinates(meuse) <- ~x+y # Calculate distance weighted mean on cadmium variable in meuse data cadmium.idw <- idw.smoothing(meuse, 'cadmium', k=nrow(meuse), d = 1000) meuse@data$cadmium.wm <- cadmium.idw opar <- par(no.readonly=TRUE) par(mfrow=c(2,1)) plot(density(meuse@data$cadmium), main='Cadmium') plot(density(meuse@data$cadmium.wm), main='IDW Cadmium')
par(opar)