Calculates breeding density areas base on population counts and spatial point density.

breeding.density(x, pop, p = 0.75, bw = 6400, b = 8500, self = TRUE)

Arguments

x

sp SpatialPointsDataFrame object

pop

Population count/density column in x@data

p

Target percent of population

bw

Bandwidth distance for the kernel estimate (default 8500)

b

Buffer distance (default 8500)

self

(TRUE/FALSE) Should source observations be included in density (default TRUE)

Value

A list object with:

  • pop.pts sp point object with points identified within the specified p

  • pop.area sp polygon object of buffered points specified by parameter b

  • bandwidth Specified distance bandwidth used in identifying neighbor counts

  • buffer Specified buffer distance used in buffering points for pop.area

  • p Specified population percent

Note

The breeding density areas model identifies the Nth-percent population exhibiting the highest spatial density and counts/frequency. It then buffers these points by a specified distance to produce breeding area polygons. If you would like to recreate the results in Doherty et al., (2010), then define bw = 6400m and b[if p < 0.75 b = 6400m, | p >= 0.75 b = 8500m]

References

Doherty, K.E., J.D. Tack, J.S. Evans, D.E. Naugle (2010) Mapping breeding densities of greater sage-grouse: A tool for range-wide conservation planning. Bureau of Land Management. Number L10PG00911

Author

Jeffrey S. Evans <jeffrey_evans@tnc.org>

Examples

require(sp) n=1500 bb <- rbind(c(-1281299,-761876.5),c(1915337,2566433.5)) bb.mat <- cbind(c(bb[1,1], bb[1,2], bb[1,2], bb[1,1]), c(bb[2,1], bb[2,1], bb[2,2], bb[2,2])) bbp <- Polygon(bb.mat) s <- spsample(bbp, n, type='random') pop <- SpatialPointsDataFrame(s, data.frame(ID=1:length(s), counts=runif(length(s), 1,250))) bd75 <- breeding.density(pop, pop='counts', p=0.75, b=8500, bw=6400) plot(bd75$pop.area, main='75% breeding density areas')
plot(pop, pch=20, col='black', add=TRUE)
plot(bd75$pop.pts, pch=20, col='red', add=TRUE)